期刊专题

基于信息量模型和机器学习方法的滑坡易发性评价研究——以四川理县为例

引用
以阿坝藏族羌族自治州地质灾害频发的理县为研究区,从地形地貌、地质环境、水文条件和人类工程活动等方面选取11个影响因子,通过皮尔森相关系数研究各因子之间的相关性,从而构建滑坡易发性评价指标体系.利用信息量模型计算各影响因子的信息量值,从信息量模型得出的极低和低易发性分区中选取非滑坡样本,在此基础上将样本数据代入随机森林和径向基函数神经网络2种机器学习模型开展滑坡易发性评价,并通过接收灵敏度(Receiver Operating Characteristic,ROC)曲线进行精度验证.结果显示:随机森林模型预测出的高易发区单位面积内分布的滑坡点数量更为集中,在仅占6.666%的区域分布了 74.026%的灾害点,评价结果优于径向基函数神经网络模型.ROC曲线中两模型AUC(Area Under Curve)值分别为0.893、0.874,说明随机森林模型具有更高的可靠性,比径向基函数神经网络在该区域地质灾害易发性评价中更具优势.

滑坡灾害、易发性评价、信息量模型、机器学习方法、理县

42

P642(水文地质学与工程地质学)

西藏自治区科学技术厅重点研发计划;四川矿产资源研究中心科研项目

2022-11-10(万方平台首次上网日期,不代表论文的发表时间)

共11页

1665-1675

相关文献
评论
暂无封面信息
查看本期封面目录

地理科学

1000-0690

22-1124/P

42

2022,42(9)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn