期刊专题

10.12204/j.issn.1000-7229.2022.02.009

基于用电行为数字特征画像的电力用户两阶段分类方法

引用
对用户开展精细化用电行为画像及分类,是电力企业精准掌握用户用电规律、提升服务水平和市场竞争力的关键因素之一.针对当前电力用户分类研究中用户用电行为画像结果片面、集成学习负荷分类研究中的基分类器冗余问题及负荷类别不平衡问题,提出一种基于用电行为数字特征画像的电力用户两阶段分类算法.第一阶段,提出一种结合谱聚类和集成强基分类器的用户日负荷曲线分类算法:首先,针对集成学习基分类器学习能力弱的不足,提出一种基于改进长短期记忆网络(long short-term memory,LSTM)的强基分类器;其次,针对基分类器冗余问题,提出一种基于最小正则化代理经验风险的优化选择集成策略;然后,提出一种基于密度的高斯过采样方法处理类别不平衡.第二阶段,基于负荷曲线分类结果,构建以日负荷模式发生概率为数字特征的用户用电行为画像,采用谱聚类算法对用户画像实施分类.最后,通过实测用户负荷数据验证了所提方法的有效性.

电力用户分类;数字特征画像;负荷曲线分类;类别不平衡;优化选择集成

43

TM714(输配电工程、电力网及电力系统)

国家电网公司科技项目5217L021000C

2022-02-22(万方平台首次上网日期,不代表论文的发表时间)

共11页

70-80

相关文献
评论
暂无封面信息
查看本期封面目录

电力建设

1000-7229

11-2583/TM

43

2022,43(2)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn