期刊专题

10.12204/j.issn.1000-7229.2021.02.006

计及相似日与气象因素的电动汽车充电负荷聚类预测

引用
电动汽车充电负荷精准预测对于电网调度、电力市场交易、充电站规划建设等具有实际意义.由于电动汽车充电负荷特性异于传统的电力负荷,两者负荷的规律性及影响因素的敏感性各有不同,有必要针对电动汽车充电负荷影响因素及预测模型开展针对性研究.考虑到不同类型电动汽车充电负荷时间序列特性及影响因素存在差异,构建考虑日类型、最高与最低温度的电动汽车充电负荷预测模型;采用模糊C均值(fuzzy C-means,FCM)聚类算法对充电负荷进行聚类分析,挖掘数据特征属性,提取相似日负荷;针对聚类后的相似日负荷采用最小二乘支持向量机(least square support vector machine,LS-SVM)进行预测.将所得的预测结果和测试集进行对比,结果显示,基于该模型的预测精度高于使用非聚类的LS-SVM方法,验证了预测模型的有效性.

电动汽车、充电负荷预测、日期类型、模糊C均值(FCM)、最小二乘支持向量机(LS-SVM)

42

TM714(输配电工程、电力网及电力系统)

国家自然科学基金项目72001078

2021-03-04(万方平台首次上网日期,不代表论文的发表时间)

共7页

43-49

相关文献
评论
暂无封面信息
查看本期封面目录

电力建设

1000-7229

11-2583/TM

42

2021,42(2)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn