期刊专题

10.12204/j.issn.1000-7229.2020.08.003

基于负荷数据频域特征和LSTM网络的类别不平衡负荷典型用电模式提取方法

引用
现有用户用电模式提取技术主要基于负荷数据时域特征提取,无法准确分辨时域上欧式距离接近但频域上波动特性差异较大的负荷数据,且对类别不平衡负荷数据的分类准确率较低.为解决上述问题,文章首先通过基于样本支持向量的过采样方法(support vector machines-synthetic minority over-sampling technique,SVM-SMOTE)对存在类别不平衡问题的负荷数据进行处理;然后,通过极大重叠离散小波变换(maximal overlap discrete wavelet transform,MODWT)对负荷数据进行分解,并将分解后的尺度系数和细节系数组成频域的特征矩阵;最后将频域特征矩阵输入深度长短期记忆(long short-term memory,LSTM)神经网络进行负荷分类并通过求取各个类别质心来获取典型用电模式.实验结果表明,该方法具有良好的类别不平衡数据处理能力和负荷分类效果.

深度学习、类别不平衡、极大重叠离散小波变换(MODWT)、负荷分类、长短期记忆神经网络(LSTM)

41

TM74(输配电工程、电力网及电力系统)

国家电网公司科技项目521996180007

2020-08-14(万方平台首次上网日期,不代表论文的发表时间)

共8页

17-24

相关文献
评论
暂无封面信息
查看本期封面目录

电力建设

1000-7229

11-2583/TM

41

2020,41(8)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn