期刊专题

10.3969/j.issn.1000-7229.2018.04.002

BP神经网络在线优化卡尔曼滤波算法在钒电池SOC估算中的应用

引用
针对传统卡尔曼滤波法在钒电池荷电状态(state of charge,SOC)估算中将电池内部模型参数作为恒定值,而导致误差增大的缺陷,该文使用反向传播(back propagation,BP)神经网络在线更新卡尔曼滤波过程的参数值,以提高参数的精度.选用常见的戴维南(Thevenin)等效电路模型,通过神经网络更新内部欧姆内阻R0和极化电阻Rp、电容Cp完成卡尔曼滤波过程的优化,使系统模型卡尔曼滤波估算中的每一步都得到更新,从而弥补了上述传统算法的缺陷.同时,该文还设计了电池测试试验,通过对数据的检验以及与双卡尔曼滤波的优化方式的结果进行对比,验证了神经网络优化的方法较双卡尔曼滤波优化能更好地体现出系统的动态特性,估算的结果具有更高的精度和更好的收敛性,证明了该方法非常适用于钒电池系统的实时SOC估计,具有理论与应用价值.

钒电池、荷电状态(SOC)估算、卡尔曼滤波算法、BP神经网络、储能

39

TM73(输配电工程、电力网及电力系统)

国家高技术研究发展计划项目863计划2012AA051905 Project supported by National High Technology research and Development of China 863 Program2012AA051905

2018-05-11(万方平台首次上网日期,不代表论文的发表时间)

共6页

9-14

相关文献
评论
暂无封面信息
查看本期封面目录

电力建设

1000-7229

11-2583/TM

39

2018,39(4)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn