期刊专题

10.15938/j.emc.2022.08.012

基于稀疏自适应S变换和深度残差网络的轴承故障诊断方法

引用
复杂滚动轴承振动信号存在非线性、非平稳等问题,传统信号处理方法难以实现故障特征的有效提取和高精度的故障分类.针对此问题,从轴承振动信号的时频特性出发,提出一种基于稀疏自适应S变换和深度残差网络的轴承故障诊断方法.首先将采集的振动信号进行稀疏自适应S变换,得到轴承不同工况下的时频图像特征;然后构建深度残差网络结构,并合理的选取优化器、初始学习率等网络参数,提出基于深度残差网络的轴承故障诊断模型.对某滚动轴承振动数据集的计算结果表明,基于稀疏自适应S变换的时频分析方法具有较高的时频分辨率,所构建的深度残差网络模型能够准确识别不同故障状态及其严重程度下的轴承运行信息,为滚动轴承的故障状态诊断提供了技术支撑.

故障诊断、滚动轴承、振动信号、时频特性、稀疏自适应S变换、深度残差网络

26

TM343;TN911(电机)

国网上海市电力公司科技项目B3094020000L

2022-09-16(万方平台首次上网日期,不代表论文的发表时间)

共8页

112-119

暂无封面信息
查看本期封面目录

电机与控制学报

1007-449X

23-1408/TM

26

2022,26(8)

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn