期刊专题

10.15938/j.emc.2015.01.014

基于小波奇异熵和相关向量机的氢气传感器故障诊断

引用
针对氢气传感器故障问题,提出了一种智能化的传感器故障诊断方法,可以对自身故障状态进行诊断和识别。提出了一种基于小波奇异熵( wavelet singular entropy,WSE)和相关向量机( relevance vector machine,RVM)原理的氢气传感器故障诊断方法,将小波变换和奇异熵两种分析思想相结合,提取信号的完备故障特征;利用小生境粒子群优化算法( niche particle swarm optimiza-tion,NPSO)对相关向量机的核参数进行优化,提高故障诊断的准确率。将提出的方法与其他成熟算法进行了比较,实验结果表明所提方法故障诊断识别率达到98%以上,解决了非线性、小样本条件下的传感器故障诊断问题,提高了传感器的可靠性。

小波奇异熵、相关向量机、氢气传感器、小生境粒子群优化、故障诊断

TP206.3(自动化技术及设备)

国家自然科学基金61201306

2015-01-28(万方平台首次上网日期,不代表论文的发表时间)

共6页

90-95

相关文献
评论
暂无封面信息
查看本期封面目录

电机与控制学报

1007-449X

23-1408/TM

2015,(1)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn