期刊专题

10.3969/j.issn.1007-449X.2014.11.012

采用图像分析与神经网络识别绝缘子憎水性

引用
为了快捷准确的识别复合绝缘子的憎水性等级,提出了基于图像分析与神经网络的绝缘子憎水性识别方法.试验获取各个憎水性等级的绝缘子图像,对图像进行直方图均衡增强、自适应中值滤波处理后,利用二维Otsu阈值法对图像进行分割;然后,提取4个与绝缘子憎水性相关的4个特征量,以这4个特征量作为输入向量,以相应的憎水性等级作为输出向量,通过训练得到优化的BP(back propagation)神经网络识别模型,并用于绝缘子憎水性等级的识别.试验结果表明该方法能够准确识别绝缘子的憎水性等级,总识别率超过了90%,准确度达到了实际应用的要求,为在线检测绝缘子憎水性奠定了基础.

复合绝缘子、憎水性、BP神经网络、直方图均衡、自适应中值滤波、二维Otsu阈值法

18

TM216(电工材料)

中央高校基本科研业务费专项资金13MS71

2015-01-13(万方平台首次上网日期,不代表论文的发表时间)

共6页

78-83

相关文献
评论
暂无封面信息
查看本期封面目录

电机与控制学报

1007-449X

23-1408/TM

18

2014,18(11)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn