期刊专题

10.3969/j.issn.1002-087X.2023.07.014

基于BiLSTM-STW神经网络的锂电池剩余容量预测

引用
针对锂电池剩余容量预测精度无法满足当前工程应用的问题,结合双向长短时记忆网络(bi-directional long short-term memory,BiLSTM)与滑动时间窗口(sliding time window,STW)算法的优点,提出一种电池剩余容量预测方法.首先分析BILSTM神经网络和STW算法原理,构建了BiLSTM-STW神经网络模型,采用自适应矩优化算法(adaptive moment estimation,Adam)对模型超参数进行优化,实现模型修正;然后选取美国国家航空航天局(National Aeronautics Space and Administration,NASA)埃姆斯研究中心锂电池数据,对数据进行处理并选取容量衰减特征数据作为神经网络的预测输入量;最后利用构建的神经网络对NASA锂电池数据集进行剩余容量预测实验.实验结果表明,所构建的神经网络模型能够精确预测锂电池的剩余容量,相比LSTM神经网络模型有更好的精确度.

锂电池、双向长短时记忆网络、滑动时间窗口、剩余容量预测、神经网络

47

TM912

2023-08-07(万方平台首次上网日期,不代表论文的发表时间)

共5页

889-893

暂无封面信息
查看本期封面目录

电源技术

1002-087X

12-1126/TM

47

2023,47(7)

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn