期刊专题

10.3969/j.issn.1002-087X.2022.08.023

基于SSA-DBN的光伏阵列故障诊断方法

引用
由于光伏阵列常年处于恶劣的环境中,光伏组件时常发生故障.用深度信念网络(deep belief network,DBN)模型进行光伏组件故障诊断时,由于权重和偏置初始化的随机性,导致模型在训练和学习的过程中易陷入局部最优且收敛速度缓慢,因此提出麻雀搜索算法(sparrow search algorithm,SSA)优化深度信念网络权重和偏置的故障诊断方法.首先,通过SSA算法对DBN网络的可见层权值进行编码;其次,采用适应度函数对动量参数进行优化,以减少训练过程中的误差;最后,不断更新种群的速度和位置,以寻求个体最优和全局最优.实验分别与传统DBN网络和深度卷积神经网络(DCNN)的诊断准确率及重构误差两个方面进行了对比分析,结果证明该优化DBN网络增强了网络的泛化能力,提高了光伏故障诊断的识别精度.

光伏阵列、故障诊断、深度信念网络(DBN)、麻雀搜索算法、识别精度

46

TM914

河北省自然科学基金重点项目A2020201021

2022-08-30(万方平台首次上网日期,不代表论文的发表时间)

共5页

925-929

暂无封面信息
查看本期封面目录

电源技术

1002-087X

12-1126/TM

46

2022,46(8)

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn