期刊专题

10.3969/j.issn.1002-087X.2016.02.015

BP神经网络预估锂离子电池SOC训练数据选择

引用
采用BP神经网络对电动汽车用动力锂离子电池荷电状态(SOC)预估进行研究,分析了BP神经网络的模型原理及锂离子电池极化现象.对比采用恒流实验数据训练BP神经网络,提出改进BP神经网络训练数据选择方法,以适应变电流的实际循环中,锂离子电池因极化现象而产生的动态非线性,并进行了电池SOC值的预估.实验表明,采用改进训练数据训练的BP神经网络,在电流剧烈变化的实际工况环境下具有更高的SOC预估精度.

BP神经网络、SOC预估、极化现象、训练数据

40

TM912

2016-05-27(万方平台首次上网日期,不代表论文的发表时间)

共4页

283-286

暂无封面信息
查看本期封面目录

电源技术

1002-087X

12-1126/TM

40

2016,40(2)

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn