期刊专题

10.3969/j.issn.1002-087X.2013.08.036

基于PSO优化BPNN估计光伏阵列MPPT控制系统研究

引用
为了充分利用光伏阵列转换能量,提高光伏阵列的发电效率,在分析光伏阵列的伏安特性及最大功率点跟踪(MPPT)原理的基础上,提出了一种基于粒子群算法优化BP神经网络(PSO-BPNN)的建模方法,并用这种改进的神经网络构建了光伏阵列的动态模型.通过PSO-BPNN模型拟合光伏阵列输出功率与输出电压的非线性关系,实现了对光伏阵列的最大功率点跟踪.Matlab/Simulink仿真及在线测试结果表明:基于PSO-BPNN估计的光伏阵列MPPT控制系统能快速、精确地跟踪光伏阵列的最大功率点,改善了BP神经网络收敛速度慢,易陷入局部极值,建模精度不高的缺点,提高了系统的稳定性和能量转换效率,是研究光伏发电这个复杂非线性系统的一个可行办法.

光伏阵列、粒子群优化算法、BP神经网络、最大功率点跟踪、阻抗变换器

37

TM914

湖南省高等学校科学研究项目10C0319

2013-09-26(万方平台首次上网日期,不代表论文的发表时间)

共5页

1410-1413,1421

暂无封面信息
查看本期封面目录

电源技术

1002-087X

12-1126/TM

37

2013,37(8)

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn