10.13811/j.cnki.eer.2018.11.004
MOOCs环境下个性化学习需求预测建模与仿真——系统动力学的视角
MOOCs环境下,基于学习者前期学习表现进行个性化学习需求预测,能够进一步优化学习体验,提高学习者课程参与度.研究以学习者的个性化学习需求为研究内容,以系统动力学为指导方法,并交叉使用层次分析法和非线性回归分析确定变量间的数量关系,建立个性化学习需求预测模型.最后结合两门不同语种课程数据进行模拟仿真分析,对学习者各方面学习需求变化状况和引起学习需求变化的高杠杆因素进行探索与验证.研究结果表明:所构建的预测模型包括内容、资源、过程和评价四个需求子系统,涵盖3个状态变量、4个流率变量、23个辅助变量和20个常量,能够对学习者的个性化学习需求进行准确预测;内容难度需求和评价标准需求是个性化学习需求变化的主要体现,这两方面分别与学习者知识总量和学习投入总量呈正向显著相关;学习兴趣、需求满足程度以及课程目标是需求预测中需要关注的高杠杆因素;不同的课程中,学习者个性化学习需求变化的主要体现与需要关注的高杠杆因素相同,但高杠杆因素的影响程度会随课程不同而有所变化.
MOOCs、个性化学习需求、预测建模、系统动力学、仿真分析
39
G434(电化教育)
2018年度教育部人文社会科学研究青年基金项目“基于测评大数据的学习预警与干预研究”18YJC880068;江苏省教育科学“十三五”规划2018年度重点资助课题“基于学习测评大数据的智能评价工具设计与应用研究”C-a/2018/01/07
2018-11-16(万方平台首次上网日期,不代表论文的发表时间)
共9页
29-37