10.19595/j.cnki.1000-6753.tces.200557
基于改进支持向量回归的锂电池剩余寿命预测
锂离子电池凭借其优越的性能广泛用于电动汽车及储能领域.然而,随着使用时间增加,锂离子电池性能大幅度衰退,会间接导致设备性能衰退或发生故障.因此,准确预测锂离子电池剩余有效寿命(RUL),能够对电池进行及时维护和更换,保障电池安全可靠运行.该文从充电过程中提取能够表征电池性能退化的间接健康因子,并利用Pearson和Spearman相关性分析法分析与容量之间的相关性;构建一种基于间接健康因子的改进蚁狮优化算法(IALO)支持向量回归(SVR)预测方法,实现在线准确预测锂离子电池RUL.利用NASA电池数据集对IALO-SVR方法进行验证,对比分析反向传播(BP)和SVR方法,实验结果表明,所构建的IALO-SVR方法能够更加准确地预测锂离子电池RUL.
锂离子电池;剩余有效寿命;改进蚁狮优化算法;支持向量回归
36
TM912
2021-09-16(万方平台首次上网日期,不代表论文的发表时间)
共12页
3693-3704