期刊专题

10.19595/j.cnki.1000-6753.tces.200437

基于改进深度残差收缩网络的电力系统暂态稳定评估

引用
针对电力系统暂态稳定评估中,电力系统同步相量测量装置(PMU)量测数据在采集和传输过程可能存在噪声问题,以及由于暂态稳定与失稳样本不平衡,导致基于数据驱动的暂态稳定评估模型训练的倾向性和误判后果严重问题,提出基于改进深度残差收缩网络(IDRSN)的电力系统暂态稳定评估方法.首先将底层量测电气量构建成特征图形式作为模型输入,利用模型深层结构建立输入与稳定结果之间的映射关系.面对噪声问题,模型通过注意力机制,采用软阈值函数自动学习噪声阈值,减小噪声及无关特征干扰;并通过焦点损失函数(FL),引入权重系数修正模型训练的倾向性,利用调制因子重点关注误分类样本,提高模型训练效率和评估性能.通过新英格兰10机39节点系统进行仿真分析,所提模型能够有效减小不同程度的噪声干扰,在不平衡数据集上修正模型训练偏向性,以减少误分类样本,在不同PMU配置方案下,均取得较好评估效果.

电力系统、暂态稳定评估、深度学习、深度残差收缩网络、焦点损失函数

36

TM712(输配电工程、电力网及电力系统)

2021-06-11(万方平台首次上网日期,不代表论文的发表时间)

共12页

2233-2244

暂无封面信息
查看本期封面目录

电工技术学报

1000-6753

11-2188/TM

36

2021,36(11)

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn