期刊专题

10.3969/j.issn.1000-6753.2015.24.006

采用最优小波树和改进BP神经网络的感应电动机定子故障诊断

引用
为了准确及时地识别并排除感应电动机定子匝间短路故障,保障电动机设备的安全运行,提出了一种基于最优小波树和捕食搜索遗传算法优化神经网络的新型故障诊断方法.结合故障电流的特征,采用最优小波树,将滤除基波分量后的定子残余电流信号进行分解,提取表征信号内在规律最强的分解节点能量成分,作为BP神经网络的输入特征向量.采用BP神经网络进行分类,通过捕食搜索策略优化的遗传算法选择神经网络训练的初始权值和阈值,提升网络训练的速度和准确度.实验结果表明,该方法不但可以提取优于小波包方法的最优特征向量,同时可以准确识别三种故障下的电动机定子匝间短路故障.

感应电动机、定子匝间短路故障、最优小波树、捕食搜索遗传算法、BP神经网络

30

TM320(电机)

教育部科学技术研究重大资助项目311021

2016-03-18(万方平台首次上网日期,不代表论文的发表时间)

共8页

38-45

相关文献
评论
暂无封面信息
查看本期封面目录

电工技术学报

1000-6753

11-2188/TM

30

2015,30(24)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn