发电机进相能力的RBF神经网络模型
发电机进相运行是调节电网电压、改善电能质量的一种经济性、技术性皆优的先进手段。由于发电机是一个多变量、强耦合的非线性系统,基于传统分析方法难以精确建立其进相能力分析模型,本文提出基于径向基函数(RBF)神经网络的发电机进相能力模型,以发电机有功功率和无功功率为输入,以发电机功角、电网电压为输出,采用江苏电网某600MW发电机进相试验数据训练和测试RBF网络,并探讨了基宽、神经元数的选择对RBF网络收敛精度的影响。研究表明本文所建立的发电机进相RBF模型具有速度快、精度高的优点,具有良好的泛化能力,其性能优于BP神经网络模型。本文提出的方法能有效克服传统进相分析方法的局限性,适用于发电机进相运行实时控制,有推广应用价值。
径向基函数(RBF)、神经网络、发电机进相、建模
27
TM311(电机)
江苏省电力公司重点科技项目J2009032
2012-04-28(万方平台首次上网日期,不代表论文的发表时间)
124-129