期刊专题

10.3321/j.issn:1000-6753.2008.05.014

电动车电池SOC估计的径向基函数神经网络方法

引用
结合电池容量估计问题,将广义生长剪枝径向基函数神经网络方法用于判断电动车蓄电池的荷电状态.通过神经网络输入参数的选择,文章设计标准模型、递推模型和安时模型三种不同的估计模型.实验结果表明:估计模型经过训练后,可以通过,蓄电池的工作电压、工作电流和表面温度参数估计蓄电池的荷电状态实时值,其中安时模型的训练时间、估计精度、网络的规模较其他两种模型更为出色.同时,本文引入解耦卡尔曼滤波器算法,有效提高了广义生长剪枝径向基神经网络的训练速度,在保证精度的前提下,将模型的训练时间缩短了1/2.

电动车、荷电状态、神经网络、径向基函数、广义生长剪枝

23

TM912

2008-11-19(万方平台首次上网日期,不代表论文的发表时间)

共7页

81-87

相关文献
评论
暂无封面信息
查看本期封面目录

电工技术学报

1000-6753

11-2188/TM

23

2008,23(5)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn