期刊专题

10.12067/ATEEE1811049

基于数据清洗和知识迁移的变压器故障诊断模型

引用
变压器是保障电网安全运行的重要基础,本文建立了一种基于数据清洗和知识迁移的变压器故障诊断模型,用于解决变压器单体故障数据少、总体数据繁杂导致诊断器泛化能力低的问题.首先,采用Tanimoto系数计算待诊断变压器与其他变压器故障的综合相似度,对辅助故障数据进行一次清洗;其次,通过剔除奇异边缘附近故障数据,对目标和辅助故障数据进行二次清洗;在两次数据清洗的基础上,以支持向量机作为迁移学习算法TrAdaBoost的基本分类算法,通过迭代不断调整目标故障数据和辅助故障数据的权重,将辅助故障数据中的有效知识迁移至故障诊断器,得到基于迁移学习的变压器故障诊断器模型.测试结果表明数据清洗和知识迁移能够有效提高诊断效率以及故障识别的准确性.

变压器、故障诊断模型、知识迁移、数据清洗、TrAdaBoost算法

39

TM76(输配电工程、电力网及电力系统)

南方电网科技项目 ZBKJXM20180220

2020-03-23(万方平台首次上网日期,不代表论文的发表时间)

共9页

28-36

相关文献
评论
暂无封面信息
查看本期封面目录

电工电能新技术

1003-3076

11-2283/TM

39

2020,39(1)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn