期刊专题

10.3969/j.issn.1001-3849.2021.11.001

基于粒子群优化算法-广义回归神经网络的磷化膜耐蚀性预测模型

引用
选取磷化液温度、磷化液游离酸度和磷化时间作为输入参数,耐点蚀时间作为输出参数,引入广义回归神经网络(GRNN)建立磷化膜耐蚀性预测模型,并分别采用果蝇优化算法(FOA)、粒子群优化算法(PSO)对平滑因子寻优进而优化预测模型.使用18组训练样本对优化后模型进行训练,9组检验样本用于优化后模型的预测准确度评价.结果表明:PSO-GRNN模型的预测值非常接近真实值,预测相对误差在[0.001,1.778]区间内,均方根误差最低、为0.682.与常规BPNN模型和FOA-GRNN模型相比,PSO-GRNN模型的预测准确度较高,对磷化膜耐蚀性预测效果良好.

磷化膜耐蚀性;耐点蚀时间;广义回归神经网络;果蝇优化算法;粒子群优化算法

43

TG174(金属学与热处理)

河北省秦皇岛市科技局项目201703A017

2021-11-24(万方平台首次上网日期,不代表论文的发表时间)

共6页

1-6

暂无封面信息
查看本期封面目录

电镀与精饰

1001-3849

12-1096/TG

43

2021,43(11)

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn