期刊专题

10.3969/j.issn.1000-3983.2015.05.006

EMD融合多重分形的故障诊断研究

引用
本文建立了以EMD分解为基础,将分解信号再多重分形然后用改进BP神经网络训练的水轮发电机组故障诊断模型.该模型先利用EMD分解对振动信号进行识别,得到故障信号的EMD近似系数,再通过多重分形谱算法提取振动故障的特征向量,最后将该特征向量输入BP神经网络进行分类识别.故障信号频谱特性的提取差异很大,不能反应故障特征.该模型直接通过波形提取信号特征,避免频谱提取的提示还结合了多重分形谱进行诊断识别,为水轮发电机组故障诊断提供了一种新的思路.经过现场试验,该方法能够准确识别故障,结果令人满意.

故障诊断、EMD、多重分形、EMD系数

TM312(电机)

2015-12-15(万方平台首次上网日期,不代表论文的发表时间)

共7页

24-30

相关文献
评论
暂无封面信息
查看本期封面目录

大电机技术

1000-3983

23-1253/TM

2015,(5)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn