期刊专题

10.19753/j.issn1001-1390.2024.01.016

基于局部线性嵌入和深度森林算法的电力客户投诉预测模型

引用
由于电力市场竞争日益激烈,用户对服务质量的要求不断提高,用户投诉量持续上升.在基于大数据的电力客户投诉预测模型的体系结构基础上,提出一种基于局部线性嵌入和深度森林算法的电力客户投诉预测方法.采用局部线性嵌入算法对客户投诉预测模型的输入特征向量进行降维处理,减少计算量和避免陷入局部最优解;对降维后的投诉预测特征向量进行多粒度扫描,提高其表征学习能力;基于级联森林建立深度森林算法模型,实现客户投诉预测.实际数据的仿真结果表明,与不进行降维处理及其他预测模型相比,文中所提出的预测模型可以更准确地预测客户投诉趋势,为电力企业客户投诉分析和预测提供了参考依据.

电力客户、投诉预测模型、局部线性嵌入、深度森林算法

61

TM93

2024-02-03(万方平台首次上网日期,不代表论文的发表时间)

共6页

107-112

相关文献
评论
暂无封面信息
查看本期封面目录

电测与仪表

1001-1390

23-1202/TH

61

2024,61(1)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn