10.19753/j.issn1001-1390.2021.02.023
基于Attention-LSTM的光伏超短期功率预测模型
超短期光伏发电功率预测有利于电网的调度管理,提高电力系统运行效率及经济性.针对传统长短时记忆(LSTM)神经网络在处理长序列输入时易忽略重要时序信息的缺陷,文章提出了一种结合注意力机制(Attention)与LSTM网络的功率预测模型.采用皮尔森相关系数法(Pearson)分析了实验的历史数据集,剔除无关变量,对数据集进行了降维处理,简化了预测模型结构.在此基础上将Attention机制与LSTM网络相结合作为预测模型.At-tention机制通过对LSTM的输入特征赋予了不同的权重,使得预测模型对长时间序列输入的处理更为有效.以某地光伏电站实测数据对文中所提模型进行训练和对比验证,所提出的预测模型能够更充分地利用历史数据,对长时间输入序列中的关键信息部分更为敏感,预测精度更高.
光伏发电、超短期功率预测、LSTM、注意力机制
58
TM615(发电、发电厂)
国家自然科学基金重点项目61433004
2021-03-08(万方平台首次上网日期,不代表论文的发表时间)
共7页
146-152