期刊专题

10.19753/j.issn1001-1390.2021.02.023

基于Attention-LSTM的光伏超短期功率预测模型

引用
超短期光伏发电功率预测有利于电网的调度管理,提高电力系统运行效率及经济性.针对传统长短时记忆(LSTM)神经网络在处理长序列输入时易忽略重要时序信息的缺陷,文章提出了一种结合注意力机制(Attention)与LSTM网络的功率预测模型.采用皮尔森相关系数法(Pearson)分析了实验的历史数据集,剔除无关变量,对数据集进行了降维处理,简化了预测模型结构.在此基础上将Attention机制与LSTM网络相结合作为预测模型.At-tention机制通过对LSTM的输入特征赋予了不同的权重,使得预测模型对长时间序列输入的处理更为有效.以某地光伏电站实测数据对文中所提模型进行训练和对比验证,所提出的预测模型能够更充分地利用历史数据,对长时间输入序列中的关键信息部分更为敏感,预测精度更高.

光伏发电、超短期功率预测、LSTM、注意力机制

58

TM615(发电、发电厂)

国家自然科学基金重点项目61433004

2021-03-08(万方平台首次上网日期,不代表论文的发表时间)

共7页

146-152

暂无封面信息
查看本期封面目录

电测与仪表

1001-1390

23-1202/TH

58

2021,58(2)

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn