期刊专题

10.11959/j.issn.2096−0271.2022039

基于PSOFS和TSK模糊系统的不平衡心电数据分类算法

引用
提出基于粒子群优化特征选择(PSOFS)算法和TSK(Takagi-Sugeno-Kang)模糊系统的心电信号分类模型,即基于PSOFS和TSK的并行集成模糊神经网络(PE-PT-FN),用于心电图预测.首先对训练集中的各类样本进行随机放回抽样,然后将抽样得到的样本合并在一起,再独立且并行地通过PSOFS算法进行特征选择.PSOFS算法中不同的位置表示不同的特征子集,初始位置随机的粒子经过多次迭代收敛至最佳位置.每个子集得到一个特征子集用于并行训练多组独立的小型TSK模糊神经网络(TSK-FNN).模糊系统的可解释性和PSOFS算法挑选出来的特征子集能有效地帮助医学研究者找出心电信号数据与不同类型病例之间的关联.实验证明,PE-PT-FN在保留可解释性的前提下,能将预测结果的宏召回率提升至92.35%.

TSK模糊神经网络、粒子群优化特征选择、集成学习、心电信号分类、不平衡数据

8

TP301(计算技术、计算机技术)

国家自然科学基金;国家自然科学基金;浙江省教育厅一般科研项目

2022-09-22(万方平台首次上网日期,不代表论文的发表时间)

共14页

139-152

暂无封面信息
查看本期封面目录

大数据

2096-0271

10-1321/G2

8

2022,8(5)

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn