10.11959/j.issn.2096-0271.2021041
基于SVD++隐语义模型的信任网络推荐算法
推荐算法通常基于用户的行为数据进行建模,然而显式行为数据的稀疏性可能会引起推荐算法的冷启动问题.为了降低数据稀疏和冷启动问题对推荐算法效果的影响,在已有显式信任关系的基础上,基于用户相似度引入隐式信任关系,通过SVD++隐语义模型设计了新的推荐算法.为了提升算法效果,进一步融合邻域模型,推导出算法评分预测式及损失函数.在Epinions开源数据集中将RMSE和MAE作为测试指标,在全体用户集和冷启动用户集上进行对比实验.实验结果显示,设计的推荐算法可以在一定程度上改善原推荐算法的冷启动问题,并取得更好的评分预测效果.
推荐算法;隐语义模型;信任网络;评分预测
7
TP315(计算技术、计算机技术)
2021-09-30(万方平台首次上网日期,不代表论文的发表时间)
共12页
105-116