期刊专题

10.11959/j.issn.2096-0271.2015036

面向大数据的并行聚类算法在股票板块划分中的应用

引用
上市公司的经营业绩在一定程度上反映股票的投资价值,因此以反映上市公司盈利能力、偿债能力、成长能力、资产管理质量及股东获利能力5个方面共1 5项财务指标作为股票投资价值的衡量指标,首次尝试使用面向大数据的并行聚类算法Mahout中的K-means聚类算法和模糊K-means聚类算法对中国A股市场约2 600支股票依据其财务指标进行聚类,以便进行股票板块的划分,并比较两种算法在不同距离度量方式下的迭代次数、执行时间、聚类间密度和聚类内密度.实验结果表明,谷本距离度量方式下的K-means算法聚类效果最好,因此可将该实验结果作为最终股票板块划分结果进行分析,从而为投资决策提供参考.

财务指标、并行聚类算法、K-means、模糊K-means、股票板块划分

1

北京高等学校青年英才计划资助项目No.YETP0988,2014年度中财121人才工程青年博士发展基金资助项目No.QBJ1427

2016-01-06(万方平台首次上网日期,不代表论文的发表时间)

前插1-前插2,1-9

暂无封面信息
查看本期封面目录

大数据

2096-0271

10-1321/G2

1

2015,1(4)

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn