期刊专题

10.3969/j.issn.1671-0436.2016.02.009

基于密度峰值聚类的阵型识别算法

引用
针对RoboCup2 D足球仿真中阵型识别问题,提出了使用一种基于密度峰值聚类的机器学习算法来识别阵型。该算法是根据坐标点与坐标点之间的距离计算与第i个点之间的距离小于截断距离的个数,并对个数进行顺序排列,寻找被低密度区域分离的高密度区域,得到聚类中心。算法核心是对聚类中心的刻画以及数据的选取。聚类中心本身的密度大,被密度均不超过它的邻居所包围,与其他密度更大的数据点之间的“距离”相对更大。对有效数据进行聚类的仿真结果表明,该算法将数据聚类成3类,通过阵型读取显示文件证实了聚类结果的正确性,同时也印证了对球队中前锋、中锋、后卫的区域的定义。

RoboCup2 D、阵型、密度峰值聚类、机器学习

29

TP3-0(计算技术、计算机技术)

安徽省教育厅、财政厅局级高校自然科学研究重大项目KJ2014ZD05

2016-06-15(万方平台首次上网日期,不代表论文的发表时间)

共5页

38-42

相关文献
评论
暂无封面信息
查看本期封面目录

常州工学院学报

1671-0436

32-1598/T

29

2016,29(2)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn