10.15953/j.1004-4140.2020.29.05.02
基于卷积神经网络的断层预测方法
针对传统相干体属性在预测断层时存在断层假象以及易受噪声影响等缺点,本文提出一种利用卷积神经网络进行断层预测的方法.首先构建适合实际工区断层特征的卷积神经网络模型,然后利用部分分频地震数据和人工解释出的断层标签进行网络模型训练,最后把训练好的模型应用到整个三维地震数据中进行断层预测.实际地震数据预测结果表明基于卷积神经网络断层预测结果与地震数据吻合较好,并且在断层细节刻画上要优于传统地震相干体属性方法.
卷积神经网络、断层、深度学习、相干体属性
29
P631;O242
国家科技重大专项;国家自然科学基金;中央高校基础研究业务费专项基金
2020-10-14(万方平台首次上网日期,不代表论文的发表时间)
共12页
522-533