期刊专题

10.19781/j.issn.1673-9140.2022.01.011

基于改进K-means算法的电力短期负荷预测方法研究

引用
现有方法预测电力短期负荷时忽略了对其进行聚类优化处理,导致预测耗时较长,短期负荷预测精度偏低.为此,提出一种基于改进K-means算法的电力短期负荷预测方法.该方法利用改进后的K-means算法聚类处理电力负荷大数据,使用聚类后获得的训练样本构建循环神经网络RNN拓扑结构,然后通过对RNN神经网络模型设置最优权值,实现电力负荷的短期预测.实验结果表明,所提方法具有高预测效率和高短期负荷预测精准度.

K-means算法、数据聚类、RNN神经网络模型、电力负荷大数据、预测方法

37

TM715(输配电工程、电力网及电力系统)

国家自然科学基金;国家电网有限公司总部科技项目

2022-04-19(万方平台首次上网日期,不代表论文的发表时间)

共6页

90-95

相关文献
评论
暂无封面信息
查看本期封面目录

电力科学与技术学报

1673-9140

43-1475/TM

37

2022,37(1)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn