期刊专题

10.3969/j.issn.1673-9140.2017.03.006

基于相关向量机的短期风速预测模型

引用
风速变化频繁,很难建立高精度的风电场短期风速预测模型.基于支持向量回归机(SVR)的风速预测模型虽然应用广泛,但其时间成本限制了应用前景,且模型参数较多,难以进行模型优化.为此,采用相关向量机理论搭建风速预测模型,采用主动相关决策理论减轻了计算量,节约了模型预测的时间成本,同时模型参数较少,更容易实现模型优化.以2组风速数据为例,分别运用相关向量机(RVM)和SVR模型进行预测,算例结果表明:RVM模型短期风速预测结果误差更小,预测时间更短.

风电场、短期风速预测、相关向量机、支持向量回归机

32

TM614;TK81(发电、发电厂)

国家科技支撑计划课题2014BAA06B01;中央高校基本科研业务费2015MS102

2017-11-24(万方平台首次上网日期,不代表论文的发表时间)

共5页

38-42

相关文献
评论
暂无封面信息
查看本期封面目录

电力科学与技术学报

1673-9140

43-1475/TM

32

2017,32(3)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn