期刊专题

10.3979/j.issn.1673-825X.202109070321

基于时空融合深度学习的工业互联网异常流量检测方法

引用
基于流量异常发现网络中的攻击行为具有普适性优势,而传统的异常流量检测方法难以适应大量复杂的工业互联网流量特征提取,针对此问题提出一种基于时空融合深度学习的工业互联网异常流量检测方法.对类别不平衡的流量数据进行预处理操作,以形成样本分布较为均衡的流量数据集;使用融合聚合残差变换网络和门控循环单元的深度学习模型从空间和时间维度上提取流量数据特征,实现时空融合的流量数据特征的综合提取;通过Softmax分类器对流量数据进行分类.实验测试结果表明,所提方法具有较高的准确率和F1值,分别可达到94.7%和95.47%.与传统的异常流量检测方法相比,所提方法提高了对工业互联网异常流量数据的检测指标,且模型的运行时间相对较短.

工业互联网、异常流量检测、时空融合、聚合残差变换网络、门控循环单元

34

TP393(计算技术、计算机技术)

教育部-中国移动科研基金MCM20150202

2023-01-04(万方平台首次上网日期,不代表论文的发表时间)

共9页

1056-1064

相关文献
评论
暂无封面信息
查看本期封面目录

重庆邮电大学学报(自然科学版)

1673-825X

50-1181/N

34

2022,34(6)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn