期刊专题

10.3979/j.issn.1673-825X.201904190156

基于聚类的PCA和GRNN的CSI指纹定位算法

引用
针对多径效应影响指纹定位算法中定位精度的问题,提出了一种基于聚类的主成分分析(principal compo-nent analysis,PCA)和广义回归神经网络(generalized regression neural network,GRNN)的信道状态信息(channel state information,CSI)指纹定位算法.离线训练阶段,利用中值滤波对CSI幅值进行去噪,并利用线性变换校准CSI相位,将处理后的幅值和相位作为原始联合指纹,利用改进的K-means算法将各个参考点的联合指纹集划分成多个子数据集来描述位置的多径特性,通过高维数据的PCA算法提取子数据集的特征以减少冗余信息、提高不同位置指纹的区分性,最后利用特征指纹训练GRNN模型.在线阶段,利用训练好的GRNN模型对在线测量的CSI数据进行目标对象的位置预测.实验结果表明,该算法可有效反映出位置的多径信息,且与CSI-MIMO,DeepFi和CSI-PCA相比,在定位精度方面有明显的提升.

室内定位、信道状态信息、聚类、主成分分析、广义回归神经网络

33

TN393(半导体技术)

国家自然科学基金61372058

2021-07-01(万方平台首次上网日期,不代表论文的发表时间)

共9页

449-457

相关文献
评论
暂无封面信息
查看本期封面目录

重庆邮电大学学报(自然科学版)

1673-825X

50-1181/N

33

2021,33(3)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn