10.3979/j.issn.1673-825X.2019.02.017
基于粒子群优化的马氏距离模糊聚类算法
为解决传统模糊聚类迭代算法对初始化敏感,易陷入局部最优及处理高维数据时精度下降的问题,对基于马氏距离的模糊聚类算法(fuzzy c-means algorithm based on Mahalanobis distance,M-FCM)进行优化.将马氏距离代替欧氏距离,通过构造类内紧致度、类间分离度与类间清晰度结合的适应度函数,利用粒子群优化算法(particle swarm optimization,PSO)对马氏距离模糊聚类进行研究,提出了基于粒子群优化的马氏距离模糊聚类算法(Mahal-anobis distance fuzzy clustering algorithm based on particle swarm optimization,DPSOM-FCM),并将此新算法与FCM(fuzzy c-means algorithm),M-FCM,PSO-FCM,IFPSOFCM(importance for fuzzy clustering algorithm based on particle swarm optimization)算法,在UCI(university of californiairvine)数据库的6个标准数据集上进行实验对比分析.结果表明,DPSOM-FCM算法具有算法收敛性和聚类有效性,并且聚类精确度优于其他算法,对高维数据的聚类识别能力强,即该算法具有全局优化作用.
模糊聚类、马氏距离、粒子群优化算法、适应度函数
31
TP181(自动化基础理论)
国家自然科学基金11262009
2019-05-16(万方平台首次上网日期,不代表论文的发表时间)
共6页
279-284