期刊专题

10.19708/j.ckjs.2022.06.273

基于可变形卷积和自适应二维位置编码的鲁棒车牌识别方法

引用
车牌识别是智能交通系统中的关键步骤,为提高在非可控和复杂场景下车牌的识别精度,提出了一种鲁棒车牌识别方法,该方法主要包括车牌检测和车牌字符识别2个核心部分.首先,采用YOLOv5网络实现车牌的检测;其次,基于递归卷积神经网络框架,提出了一种基于可变形卷积和自适应二维位置编码(A2DPE)的车牌字符识别方法.该方法针对车牌大小、倾斜角度和光照条件等动态变化的特点,采用了可变形卷积来更好地提取车牌字符的特征,并引入了A2 DPE模块,根据输入自适应地获取车牌字符位置编码信息.最后,利用双向长短期记忆网络进行车牌字符的识别,无须分割车牌字符,可以实现不同长度车牌字符的准确识别.在自建数据集LPdata与公开数据集CLPD上的实验结果表明,与现有方法相比,该方法能够以较低的模型复杂度达到较高的准确率.

车牌识别、可变形卷积、神经网络、车牌

42

TP391(计算技术、计算机技术)

北京市自然科学基金;北京市教委科研计划科技一般项目

2023-04-06(万方平台首次上网日期,不代表论文的发表时间)

共9页

11-18,37

相关文献
评论
暂无封面信息
查看本期封面目录

测控技术

1000-8829

11-1764/TB

42

2023,42(3)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn