期刊专题

10.19708/j.ckjs.2021.08.256

基于ResNet50和通道注意力机制的行人多属性协同识别方法

引用
针对目前行人多属性识别算法识别精度不高的问题,利用行人属性之间的内在关联关系,基于"特征提取+回归"的思想,提出了一种基于深度卷积神经网络的行人多属性协同识别方法.该方法首先对多个行人属性标签进行组合编码,得到一个标签组合向量;然后采用基于通道注意力机制的Res-Net50作为主干网络提取行人图像的深度特征;最后,设计了一个包含3个全连接层的神经网络结构来建立标签组合向量与行人深度特征之间的映射模型,在一个统一的网络框架下就可以同时对行人的多种属性进行准确识别.在行人属性公共数据集PETA和RAP上的实验结果表明,采用提出的识别方法在公共数据集PETA上获得的识别准确率为84.08%,而在公共数据集RAP上可以获得高达88.12%的识别准确率.

深度学习、ResNet50、通道注意力机制、多属性识别

41

TP391(计算技术、计算机技术)

北京市自然科学基金;北京市教育委员会科技计划一般项目

2022-09-05(万方平台首次上网日期,不代表论文的发表时间)

共9页

1-8,15

相关文献
评论
暂无封面信息
查看本期封面目录

测控技术

1000-8829

11-1764/TB

41

2022,41(8)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn