基于蓝牙技术融合混合滤波与神经网络的室内测距方法
为了解决用户在基于蓝牙技术的室内测距定位中,接收信号强度指示(RSSI)数据存在采样值波动和不稳定问题,提出了一种改进的融合混合滤波与多隐藏层神经网络的室内测距方法,通过结合各类单一滤波算法的优点,使用加权的混合滤波算法有效平滑了数据,并引入机器学习算法中的多隐藏层神经网络来构建RSSI和锚节点到信号接收器距离的非线性映射关系.此外,还搭建了基于CC2640R2F的锚节点和以手机作为蓝牙接收器的验证平台,对提出的测距方法进行验证.理论分析与实验结果表明,所提出的室内测距方法的测距结果平均误差约为0.13 m,可以有效降低测距误差,具有易于布设、功耗低、成本低等特点,在提高室内定位的稳定性和精准度等方面具有较高的应用价值.
蓝牙、RSSI、混合滤波、神经网络、测距方法
39
TP183;TN98(自动化基础理论)
2020-07-10(万方平台首次上网日期,不代表论文的发表时间)
共7页
70-76