期刊专题

10.3969/j.issn.1000-8829.2015.06.010

基于人工鱼群优化BPNN的AUV目标识别方法

引用
为了削弱复杂恶劣的环境对水下成像造成的不利影响及满足水下机器人目标识别任务实时性的需求,提出了基于人工鱼群算法(AFSA)优化BP神经网络的水下目标识别算法,通过构造组合不变矩对水下目标进行特征提取,提高了目标的聚类性能.引入具有全局寻优能力的AFSA,其在增加单纯神经网络收敛速度的同时避免算法陷入局部最优,进而建立了完整的基于人工鱼群神经网络的水下目标识别系统.在不同的水下目标中对该系统进行实验,通过比较提取的不同的目标图像,结果表明所建立系统具有较优的聚类性能和较高的识别精度.该方法用于水下目标识别是可行的、有效的.

水下图像、目标识别、不变矩、神经网络、人工鱼群算法

34

TP391(计算技术、计算机技术)

2015-07-10(万方平台首次上网日期,不代表论文的发表时间)

共4页

34-36,40

相关文献
评论
暂无封面信息
查看本期封面目录

测控技术

1000-8829

11-1764/TB

34

2015,34(6)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn