期刊专题

结合自适应PCNN的非下采样剪切波遥感影像融合

引用
为解决全色与多光谱遥感影像融合中脉冲耦合神经网络参数不能自适应调节问题,提出一种基于参数自适应脉冲耦合神经网络模型(PA-PCNN)和保持能量属性(EA)融合策略相结合的非下采样剪切波变换(NSST)的遥感影像融合方法:①通过提取多光谱影像YUV颜色空间变换的Y亮度分量并与全色影像进行NSST变换,获得高频系数和低频系数.②针对低频子带系数,采用EA法进行融合;针对高频子带系数,通过PA-PCNN模型得到的最优参数,以确定最优的PCNN模型,进而实现高频子带系数的融合.③将NSST和YUV进行逆变换得到融合影像.本文选取空间频率、相对无量纲全局误差、相关系数、视觉信息保真度、基于梯度的融合性能和结构相似度测量等6种客观评价指标对融合影像的光谱和空间细节评价,利用多组不同分辨率全色和多光谱遥感影像,通过与4种融合方法对比验证,结果表明本文方法在视觉感知和客观评价方面总体优于其他全色与多光谱遥感影像融合方法.

影像融合;非下采样剪切波变换;脉冲耦合神经网络;全色影像;多光谱影像

50

TP751;P237(遥感技术)

国家自然科学基金;云南省科技厅基础研究计划面上项目;昆明理工大学自然科学研究基金省级人培项目

2021-12-01(万方平台首次上网日期,不代表论文的发表时间)

共10页

1380-1389

暂无封面信息
查看本期封面目录

测绘学报

1001-1595

11-2089/P

50

2021,50(10)

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn