基于半监督核模糊c-均值算法的北京一号小卫星多光谱图像分类
针对遥感图像数据大多不服从高斯分布以及遥感图像分类存在非线性、模糊性和标记数据少等问题,提出基于半监督核模糊c-均值算法的多光谱遥感图像分类方法.首先,把半监督学习理论和核理论同时引入模糊c-均值算法,形成半监督核模糊c-均值算法.然后,用该算法与k-均值算法、最大似然算法、多类支持向量、半监督核支持向量、模糊c-均值算法、核模糊c-均值算法和半监督模糊c-均值算法对IRIS数据和北京一号小卫星多光谱图像进行分类试验.最后,对其分类结果进行评价.结果表明,对比其他分类算法,半监督核模糊c-均值算法能显著提高分类精度.
遥感图像分类、半监督核模糊c-均值算法、北京一号小卫星、核理论、半监督学习
40
TP751(遥感技术)
国家863计划2007AA12Z227;国家自然科学基金40701146;北京一号小卫星开放基金
2015-01-20(万方平台首次上网日期,不代表论文的发表时间)
共7页
301-306,325