期刊专题

基于小波去噪的地铁变形组合预测模型分析

引用
对地铁监测数据建立相应的预测模型,对变形可进行前瞻性预测,从而保证地铁安全的施工和运营.本文以北京市地铁某基坑工程为研究对象,首先以某一监测点为例,利用小波分析对原始监测数据进行去噪处理;然后分别利用时间序列分析模型和BP神经网络模型对去噪后的数据进行建模分析,得到原数据的拟合值和对未来变形的预测值;最后利用同期Sentinel-1A卫星影像进行相干点时序InSAR处理,得到形变结果.通过分析两个模型的预测值与实际值,并与InSAR结果进行对比,验证了两个预测模型在地铁形变监测中应用的优劣性.

地铁变形监测;时间序列分析;神经网络;时序InSAR

P258(专业测绘)

2021-11-23(万方平台首次上网日期,不代表论文的发表时间)

共5页

127-131

暂无封面信息
查看本期封面目录

测绘通报

0494-0911

11-2246/P

2021,(10)

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn