期刊专题

顾及钟差随机项的GPS卫星钟差预报

引用
针对卫星钟差呈趋势项和随机项变化的特点,提出了基于GM(1,1)与自回归求和移动平均的组合预报模型.该模型首先采用GM(1,1)模型预报钟差的趋势项部分,然后利用ARIMA模型对GM(1,1)的模型残差序列进行建模和预报,最后将GM(1,1)和ARIMA模型的预报结果对应相加即得到钟差的最终预报值.此外,采用IGS公布的精密卫星钟差进行预报试验,通过与卫星钟差预报中常用的二次多项式模型和修正指数曲线法模型预报结果的对比分析,结果表明:该方法可以对GPS卫星钟差进行高精度的中短期预报.用12 h钟差建模时,预报未来6、12、24和48 h的平均预报精度分别为0.71、1.17、1.93和4.38 ns,相比于二次多项式模型的平均预报精度分别提高了29.70%、43.75%、67.62%和76.21%;相比于修正指数曲线法模型的平均预报精度分别提高了18.39%、33.90%、61.40%和70.49%.

卫星钟差、预报、灰色模型、自回归求和移动平均、组合模型

P228.4(大地测量学)

国家自然科学基金11503030;国防创新基金面上项目CXJJ-16M205;中国科学院"西部之光"人才培养计划支持项目Y507YR0501

2018-07-18(万方平台首次上网日期,不代表论文的发表时间)

共6页

1-6

暂无封面信息
查看本期封面目录

测绘通报

0494-0911

11-2246/P

2018,(6)

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn