期刊专题

基于BP神经网络的机载高分辨率SAR图像分类方法研究

引用
研究可用于机载高分辨率SAR图像分类的灰度共生矩阵惯性矩、能量等纹理特征量以及灰度特征量.提出特征提取和统计分析选取特征向量的方法,基于BP神经网络对图像进行临督分类,最后对分类结果采用数学形态学算法进行开运算去除细小区域.由于该方法充分考虑到SAR图像灰度特征和纹理特征信息,与传统的仅仅考虑纹理特征方法相比,具有较好的分类性能,实验结果表明该方法能够获得较好的分类效果.

机载SAR、纹理特征、灰度特征、特征提取、BP神经网络

P23(摄影测量学与测绘遥感)

2009-04-15(万方平台首次上网日期,不代表论文的发表时间)

共5页

14-17,27

相关文献
评论
暂无封面信息
查看本期封面目录

测绘通报

0494-0911

11-2246/P

2009,(2)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn