10.12015/issn.1674-8034.2023.01.010
基于卷积神经网络的儿童病毒性脑炎磁共振影像分类与早期诊断研究
目的构建基于卷积神经网络的儿童病毒性脑炎MRI分类与早期诊断模型,探讨其对儿童病毒性脑炎早期诊断、精准治疗和改善患儿预后的价值.材料与方法收集浙江大学医学院附属儿童医院2020至2022年期间颅脑MRI影像数据1077例,其中病毒性脑炎患儿577例,非病毒性脑炎儿童500例.运用卷积神经网络中的Squeeze-and-Excitation Residual Networks(SE-ResNet)模型构建儿童病毒性脑炎MRI分类与早期诊断模型并与Convolutional Block Attention Module Residual Networks(CBAM-ResNet)、Mobile Networks(MobileNet)、Residual Networks(ResNet)、Shuffle Networks(ShuffleNet)模型进行了对比.结果所有模型在训练集上都达到了收敛.SE-ResNet、CBAM-ResNet、MobileNet和ShuffleNet模型在训练集训练100轮后准确率都达到90%以上,而只有CBAM-ResNet模型和本研究选用的SE-ResNet模型在验证集上同样取得了90%以上的准确率.在测试集上,CBAM-ResNet具有最高的准确率73.91%,ResNet具有最高的召回率75.45%,但只有本文所用SE-ResNet模型在准确率和召回率都达到较高水平,并且取得最好的F1得分和曲线下面积(area under the curve,AUC)值:准确率为70.83%,召回率为72.73%,AUC为0.77,F1得分为0.7183.结论运用人工智能技术结合MRI实现儿童病毒性脑炎早期诊断是可行的,本研究为进一步实现全面的儿童脑炎早期诊断、精准治疗和改善脑炎患儿预后提供了理论和应用基础.
儿童疾病、病毒性脑炎、磁共振成像、SE-ResNet、深度学习、分类模型、早期诊断
14
R445.2;R725.1(诊断学)
国家重点研发计划;国家自然科学基金
2023-02-13(万方平台首次上网日期,不代表论文的发表时间)
共7页
54-60