期刊专题

10.12015/issn.1674-8034.2022.09.011

基于MRI影像组学模型识别三角纤维软骨复合体损伤

引用
目的 构建腕关节三角纤维软骨复合体(triangular fibrocartilage complex,TFCC)的MRI影像组学模型,评价其对TFCC损伤的诊断效能.材料与方法 回顾性分析2019年1月至2021年12月于吉林大学中日联谊医院放射线科行腕关节磁共振检查的100例患者病例(损伤及非损伤各50例),所有患者均行高分辨率3.0 T磁共振扫描,选取T2WI冠状位序列,手动勾画图像中的TFCC区域,提取影像特征,采用曼-惠特尼U检验(Mann-Whitney U test)及最小绝对收缩和选择算子(least absolute shrinkage and selection operator,LASSO)算法进行数据降维、特征筛选,将所筛选出的相关性最强的影像特征采用支持向量机(support vector machine,SVM)的建模方法建立分类模型,采用受试者工作特征(receiver operating characteristic,ROC)曲线的曲线下面积(area under the curve,AUC)、精确度、敏感度和特异度评价模型的诊断效能.结果 从T2WI冠状位序列中提取到88个初始特征,用曼-惠特尼U检验和LASSO算法筛选出12个相关性特征,基于上述相关特征在SVM分类器中构建的模型AUC值为0.88,精确度、敏感度和特异度分别为90%、92%、100%,具有较好的诊断效能.结论 基于MRI的影像组学特征可以提供一个识别腕关节TFCC损伤的无创性工具,提高TFCC损伤的检出率.

腕关节、三角纤维软骨复合体、影像组学、磁共振成像、最小绝对收缩和选择算子、支持向量机

13

R445.2;R681.7(诊断学)

国家自然科学基金;电分析化学国家重点实验室开放课题;吴阶平医学基金

2022-10-09(万方平台首次上网日期,不代表论文的发表时间)

共5页

58-62

暂无封面信息
查看本期封面目录

磁共振成像

1674-8034

11-5902/R

13

2022,13(9)

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn