期刊专题

10.12015/issn.1674-8034.2021.06.008

机器学习鉴别ⅠA期宫颈癌与高级别鳞状上皮内病变:基于MRI影像组学模型

引用
目的 利用宫颈MRI图像提取影像组学特征,建立随机森林模型识别ⅠA期宫颈癌与高级别鳞状上皮内病变(high-grade squamous intraepithelial lesion,HSIL).材料与方法 回顾性分析经手术病理证实的43例ⅠA期宫颈癌患者与51例HSIL患者,按照4:1的比例设置训练集(ⅠA=34,HSIL=41)与测试集(ⅠA=9,HSIL=10).收集其术前MRI图像,经预处理后上传至影像组学云平台,分别在OSag-T2WI、OAx-T1WI以及OAx-T2FS上逐层手动勾画宫颈,获得宫颈三维容积感兴趣区(volume of interest,VOI),提取组学特征.采用方差阈值分析法(Variance Threshold)、单变量特征选择法(SelectKBest)以及最小绝对值收缩和选择法(least absolute shrinkage and selection operator,LASSO)进行数据降维、特征选择.采用随机森林模型进行机器学习,绘制ROC曲线,分析不同序列组学模型的诊断效能.结果 基于OSag-T2WI、OAx-T1WI、OAx-T2FS以及OSag-T2WI联合OAx-T2FS分别得到8个、10个、6个以及9个有效特征.以OSag-T2WI联合OAx-T2FS的组学特征值建立的随机森林模型诊断效能最高,AUC为0.89[95%CI(0.74~1.00)];基于OAx-T1WI的模型诊断效能最低,AUC为0.51[95%CI(0.23~0.78)].结论 基于MRI的影像组学随机森林模型可以较好地在没有明确病灶的情况下区分ⅠA期宫颈癌与HSIL,对于术前减少侵入性检查与指导术式有着重大的意义.

宫颈癌、高级别鳞状上皮内病变、磁共振成像、影像组学、机器学习

12

R445.2;R737.33(诊断学)

山西省回国留学人员科研项目2014-077

2021-07-05(万方平台首次上网日期,不代表论文的发表时间)

共6页

38-43

相关文献
评论
暂无封面信息
查看本期封面目录

磁共振成像

1674-8034

11-5902/R

12

2021,12(6)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn