期刊专题

10.11686/cyxb2022385

融合MODIS和Landsat数据的青海湖流域典型区NDVI重构与年内最大值变化分析

引用
归一化植被指数(NDVI)能够较准确表达出植被覆盖和生长状况,对其进行时间序列分析已成为研究全球、国家或区域植被生长的重要方式.针对当前NDVI时序产品空间分辨率不高,难以应用于小尺度的精细研究,以及利用Landsat不同时相NDVI评估生态环境质量受植被季相和年际变化影响较大等问题,首先基于增强型时空自适应反射率融合模型(ESTARFM)融合MOD09Q1和Landsat数据,对植被年内生长季NDVI数据进行预测插补,之后利用Logistic模型重构2001-2020年植被生长季NDVI曲线,通过引入MODIS逐日NDVI数据确定NDVI年内最大值日期,逐像素求解出最优的Landsat NDVI年内最大值,并将其应用于青海湖流域布哈河附近局部典型区域植被生长状况评估.结果表明:1)融合MODIS和Landsat数据的Landsat NDVI年内最大值求解结果在3倍中误差以内的占 98.5%,求解结果具有较高的精度;2)利用Landsat NDVI年内最大值进行植被生长状况评估,能弱化Landsat数据因时相差异引起的误差;3)研究区植被NDVI年内最大值呈南北高中间低的空间分布特点,年际变化整体先降低再增加,植被生长状况呈向好趋势;高寒嵩草、杂类草草甸NDVI年内最大值呈减少趋势且波动剧烈,应是青海湖流域监测的重点植被类型.

青海湖流域、Landsat NDVI年内最大值、时空融合算法、Logistic模型、时空变化

32

中国科学院战略性先导科技专项;青海省应用基础研究项目

2023-08-22(万方平台首次上网日期,不代表论文的发表时间)

共12页

28-39

暂无封面信息
查看本期封面目录

草业学报

1004-5759

62-1105/S

32

2023,32(8)

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn