期刊专题

10.11938/cjmr20223040

融合注意力机制的多尺度残差Unet的磁共振图像重建

引用
为了提高磁共振图像在欠采样下重建的质量,本文融合注意力机制和多尺度残差卷积构建Unet网络,实现磁共振图像在欠采样下的重建算法.为增强网络特征的表现能力,以及防止网络训练中梯度消失与退化的问题,在Unet网络的编码路径中引入多尺度残差卷积,提取不同尺度的特征信息;为能准确地恢复图像的细节纹理特征,在Unet网络编码和解码路径的跳层拼接部分引入卷积注意力块,对细节纹理等关键信息进行不同程度的响应.实验表明,本文方法可通过欠采样k-空间数据快速重建出细节纹理清晰且无重叠伪影的高质量磁共振图像.

磁共振成像、图像重建、Unet、注意力机制、深度学习

40

TP391.41(计算技术、计算机技术)

2023-09-25(万方平台首次上网日期,不代表论文的发表时间)

共13页

307-319

暂无封面信息
查看本期封面目录

波谱学杂志

1000-4556

42-1180/O4

40

2023,40(3)

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn