期刊专题

10.13190/j.jbupt.2022-090

雾计算网络中联邦学习协同的内容缓存方案

引用
为了减小内容获取的时延,保护用户隐私并提高用户体验,提出一种雾计算网络中结合联邦学习和推荐算法优化内容缓存性能的方案.首先,构建了端到端协作的雾计算网络模型,用户可通过端到端和无线链路从用户端、雾节点和云端获取内容;其次,在本地建立深度神经网络模型,利用历史请求数据训练本地模型,利用雾节点聚合本地模型,从而预测全局内容的流行度,同时,向用户提供个性化内容推荐列表,以提高缓存命中率;最后,使用真实数据集进行了仿真实验,实验结果表明,所提方案能有效降低内容的获取时延,提升缓存命中率.

边缘缓存、联邦学习、内容推荐、雾计算网络

46

TN925.1

国家自然科学基金61831002

2023-05-25(万方平台首次上网日期,不代表论文的发表时间)

共7页

22-28

暂无封面信息
查看本期封面目录

北京邮电大学学报

1007-5321

11-3570/TN

46

2023,46(2)

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn