期刊专题

10.13190/j.jbupt.2021-285

基于关联图关键边发现的人脸图像聚类算法

引用
针对真实场景中大量类别数未知、样本数量不均衡、数据分布复杂等导致人脸图像智能提取准确率低的问题,提出了基于关联图关键边发现的人脸图像聚类算法.首先,通过融合多个卷积神经网络提取的图像样本特征,获得鉴别性更强的特征向量,并计算不同样本之间的相似度;然后,利用拒真率和认假率设置合适的门限值,将得到的相似度结果与门限值进行比较,筛选出相似程度高的样本对,并添加样本对之间的连接边来构建关联图;再利用介数中心性测度,设计关键边发现方法,挖掘关联图中可能连接不同簇的重要连接边;最后,采用图卷积网络确认是否存在上述重要连接边以获得最终的聚类簇.实验结果表明,所提算法能够提高人脸图像聚类的准确率.

人脸聚类、关键边发现、介数中心性、图卷积网络

46

TP391.41(计算技术、计算机技术)

广东省重点领域研发计划项目2019B010153002

2023-03-15(万方平台首次上网日期,不代表论文的发表时间)

共6页

97-102

相关文献
评论
暂无封面信息
查看本期封面目录

北京邮电大学学报

1007-5321

11-3570/TN

46

2023,46(1)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn