期刊专题

10.13190/j.jbupt.2020-226

卷积记忆图协同过滤

引用
针对推荐系统中用户和项目的向量表示问题,提出了一种端到端的具有记忆单元的图神经网络.在图神经网络中引入门控循环单元解决高阶连通节点间信息损失问题,可以使得用户和项目节点从高阶邻居获得更加完整的特征信息,然后利用卷积神经网络对网络输出层间的特征向量进行融合以获得不同阶段下用户的偏好.实验结果表明,与最优对比算法相比,采用所提卷积记忆图协同过滤推荐算法在4个数据集上的评分预测性能分别提升了1.98%,4.17%,9.27%和2.70%.

图神经网络、门控循环单元、卷积神经网络、评分预测、推荐系统

44

TP301(计算技术、计算机技术)

国家自然科学基金项目;国家自然科学基金国际合作与交流项目;中石油重大科技项目

2021-08-03(万方平台首次上网日期,不代表论文的发表时间)

共6页

21-26

相关文献
评论
暂无封面信息
查看本期封面目录

北京邮电大学学报

1007-5321

11-3570/TN

44

2021,44(3)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn